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1 Basic properties of CP2

1.1 CP2 as a manifold

CP2, the complex projective space the complex projective space of two complex
dimensions, is obtained by identifying the points of complex 3-space C3 under
the projective equivalence

(z1, z2, z3) ≡ λ(z1, z2, z3) . (1)

Here λ is any non-zero complex number. Note that CP2 can also regarded as
the coset space SU(3)/U(2). The pair zi/zj for fixed j and zi 6= 0 defines a
complex coordinate chart for CP2. As j runs from 1 to 3 one obtains an atlas of
three oordinate charts covering CP2, the charts being holomorphically related
to each other (e.g. CP2 is a complex manifold). The points z3 6= 0 form a subset
of CP2 homoeomorphic to R4 and the points with z3 = 0 a set homeomorphic
to S2. Therefore CP2 is obtained by ”adding the 2-sphere at infinity to R4”.

Besides the standard complex coordinates ξi = zi/z3 , i = 1, 2 the coordi-
nates of Eguchi and Freund [2] will be used and their relation to the complex
coordinates is given by

ξ1 = z + it ,

ξ2 = x + iy . (2)

These are related to the ”spherical coordinates” via the equations

ξ1 = rexp(i
(Ψ + Φ)

2
)cos(

Θ
2

) ,

ξ2 = rexp(i
(Ψ− Φ)

2
)sin(

Θ
2

) . (3)

The ranges of the variables r,Θ,Φ,Ψ are [0,∞], [0, π], [0, 4π], [0, 2π] respectively.
Considered as a real four-manifold CP2 is compact and simply connected,

with Euler number Euler number 3, Pontryagin number 3 and second b = 1.

1.2 Metric and Kähler structures of CP2

In order to obtain a natural metric for CP2, observe that CP2 can be thought
of as a set of the orbits of the isometries zi → exp(iα)zi on the sphere S5:∑

ziz̄i = R2. The metric of CP2 is obtained by projecting the metric of S5

orthogonally to the orbits of the isometries. Therefore the distance between the
points of CP2 is that between the representative orbits on S5. The line element
has the following form in the complex coordinates

ds2 = gab̄dξadξ̄b , (4)
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where the Hermitian, in fact Kähler metric gab̄ is defined by

gab̄ = R2∂a∂b̄K , (5)

where the function K, Kähler function, is defined as

K = log(F ) ,

F = 1 + r2 . (6)

The representation of the metric is given by

ds2

R2
=

(dr2 + r2σ2
3)

F 2
+

r2(σ2
1 + σ2

2)
F

, (7)

where the quantities σi are defined as

r2σ1 = Im(ξ1dξ2 − ξ2dξ1) ,

r2σ2 = −Re(ξ1dξ2 − ξ2dξ1) ,

r2σ3 = −Im(ξ1dξ̄1 + ξ2dξ̄2) . (8)

The vierbein forms, which satisfy the defining relation

skl = R2
∑

A

eA
k eA

l , (9)

are given by

e0 = dr
F , e1 = rσ1√

F
,

e2 = rσ2√
F

, e3 = rσ3
F .

(10)

The explicit representations of vierbein vectors are given by

e0 = dr
F , e1 = r(sinΘcosΨdΦ+sinΨdΘ)

2
√

F
,

e2 = r(sinΘsinΨdΦ−cosΨdΘ)

2
√

F
, e3 = r(dΨ+cosΘdΦ)

2F .

(11)

The explicit representation of the line element is given by the expression

ds2/R2 = dr2/F 2 + (r2/4F 2)(dΨ + cosΘdΦ)2 + (r2/4F )(dΘ2 + sin2ΘdΦ2) .

(12)
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The vierbein connection satisfying the defining relation

deA = −V A
B ∧ eB , (13)

is given by

V01 = − e1

r , V23 = e1

r ,

V02 = − e2

r , V31 = e2

r ,
V03 = (r − 1

r )e3 , V12 = (2r + 1
r )e3 .

(14)

The representation of the covariantly constant curvature tensor is given by

R01 = e0 ∧ e1 − e2 ∧ e3 , R23 = e0 ∧ e1 − e2 ∧ e3 ,
R02 = e0 ∧ e2 − e3 ∧ e1 , R31 = −e0 ∧ e2 + e3 ∧ e1 ,
R03 = 4e0 ∧ e3 + 2e1 ∧ e2 , R12 = 2e0 ∧ e3 + 4e1 ∧ e2 .

(15)

Metric defines a real, covariantly constant, and therefore closed 2-form J

J = −igab̄dξadξ̄b , (16)

the so called Kähler form. Kähler form J defines in CP2 a symplectic structure
because it satisfies the condition

Jk
rJ

rl = −skl . (17)

The form J is integer valued and by its covariant constancy satisfies free Maxwell
equations. Hence it can be regarded as a curvature form of a U(1) gauge poten-
tial B carrying a magnetic charge of unit 1/2g (g denotes the gauge coupling).
Locally one has therefore

J = dB , (18)

where B is the so called Kähler potential, which is not defined globally since J
describes homological magnetic monopole.

It should be noticed that the magnetic flux of J through a 2-surface in CP2

is proportional to its homology equivalence class, which is integer valued. The
explicit representations of J and B are given by

B = 2re3 ,

J = 2(e0 ∧ e3 + e1 ∧ e2) =
r

F 2
dr ∧ (dΨ + cosΘdΦ) +

r2

2F
sinΘdΘdΦ .

(19)
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The vierbein curvature form and Kähler form are covariantly constant and have
in the complex coordinates only components of type (1,1).

Useful coordinates for CP2 are the so called canonical coordinates in which
Kähler potential and Kähler form have very simple expressions

B =
∑

k=1,2

PkdQk ,

J =
∑

k=1,2

dPk ∧ dQk . (20)

The relationship of the canonical coordinates to the ”spherical” coordinates is
given by the equations

P1 = − 1
1 + r2

,

P2 =
r2cosΘ

2(1 + r2)
,

Q1 = Ψ ,

Q2 = Φ . (21)

1.3 Spinors in CP2

CP2 doesn’t allow spinor structure in the conventional sense [5]. However, the
coupling of the spinors to a half odd multiple of the Kähler potential leads to a
respectable spinor structure. Because the delicacies associated with the spinor
structure of CP2 play a fundamental role in TGD, the arguments of Hawking
are repeated here.

To see how the space can fail to have an ordinary spinor structure consider
the parallel transport of the vierbein in a simply connected space M . The
parallel propagation around a closed curve with a base point x leads to a rotated
vierbein at x: eA = RA

BeB and one can associate to each closed path an element
of SO(4).

Consider now a one-parameter family of closed curves γ(v) : v ∈ (0, 1) with
the same base point x and γ(0) and γ(1) trivial paths. Clearly these paths define
a sphere S2 in M and the element RA

B(v) defines a closed path in SO(4). When
the sphere S2 is contractible to a point e.g., homologically trivial, the path in
SO(4) is also contractible to a point and therefore represents a trivial element
of the homotopy group Π1(SO(4)) = Z2.

For a homologically nontrivial 2-surface S2 the associated path in SO(4)
can be homotopically nontrivial and therefore corresponds to a nonclosed path
in the covering group Spin(4) (leading from the matrix 1 to -1 in the matrix
representation). Assume this is the case.

Assume now that the space allows spinor structure. Then one can parallel
propagate also spinors and by the above construction associate a closed path
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of Spin(4) to the surface S2. Now, however this path corresponds to a lift of
the corresponding SO(4) path and cannot be closed. Thus one ends up with a
contradiction.

From the preceding argument it is clear that one could compensate the non-
allowed−1- factor associated with the parallel transport of the spinor around the
sphere S2 by coupling it to a gauge potential in such a way that in the parallel
transport the gauge potential introduces a compensating −1-factor. For a U(1)
gauge potential this factor is given by the exponential exp(i2Φ) , where Φ is
the magnetic flux through the surface. This factor has the value −1 provided
the U(1) potential carries half odd multiple of Dirac charge 1/2g. In case of
CP2 the required gauge potential is half odd multiple of the Kähler potential
B defined previously. In the case of M4 × CP2 one can in addition couple the
spinor components with different chiralities independently to an odd multiple
of B/2.

1.4 Geodesic sub-manifolds of CP2

Geodesic sub-manifolds are defined as sub-manifolds having common geodesic
lines with the imbedding space. As a consequence the second fundamental form
of the geodesic manifold vanishes, which means that the tangent vectors hk

α

(understood as vectors of H) are covariantly constant quantities with respect to
the covariant derivative taking into account that the tangent vectors are vectors
both with respect to H and X4.

In [3] a general characterization of the geodesic sub-manifolds for an ar-
bitrary symmetric space G/H is given. Geodesic sub-manifolds are in 1-1-
correspondence with the so called Lie triple systems of the Lie-algebra g of the
group G. The Lie triple system t is defined as a subspace of g characterized by
the closedness property with respect to double commutation

[X, [Y, Z]] ∈ t for X, Y, Z ∈ t . (22)

SU(3) allows, besides geodesic lines, two nonequivalent (not isometry related)
geodesic spheres. This is understood by observing that SU(3) allows two
nonequivalent SU(2) algebras corresponding to subgroups SO(3) (orthogonal
3 × 3 matrices) and the usual isospin group SU(2). By taking any subset of
two generators from these algebras, one obtains a Lie triple system and by ex-
ponentiating this system, one obtains a 2-dimensional geodesic sub-manifold of
CP2.

Standard representatives for the geodesic spheres of CP2 are given by the
equations

S2
I : ξ1 = ξ̄2 or equivalently (Θ = π/2,Ψ = 0) ,

S2
II : ξ1 = ξ2 or equivalently (Θ = π/2, Φ = 0) .
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The non-equivalence of these sub-manifolds is clear from the fact that isome-
tries act as holomorphic transformations in CP2. The vanishing of the second
fundamental form is also easy to verify. The first geodesic manifold is homolog-
ically trivial: in fact, the induced Kähler form vanishes identically for S2

I . S2
II

is homologically nontrivial and the flux of the Kähler form gives its homology
equivalence class.

2 CP2 geometry and standard model symme-
tries

2.1 Identification of the electro-weak couplings

The delicacies of the spinor structure of CP2 make it a unique candidate for
space S. First, the coupling of the spinors to the U(1) gauge potential defined
by the Kähler structure provides the missing U(1) factor in the gauge group.
Secondly, it is possible to couple different H-chiralities independently to a half
odd multiple of the Kähler potential. Thus the hopes of obtaining a correct
spectrum for the electromagnetic charge are considerable. In the following it
will be demonstrated that the couplings of the induced spinor connection are
indeed those of the GWS model [4] and in particular that the right handed
neutrinos decouple completely from the electro-weak interactions.

To begin with, recall that the space H allows to define three different chiral-
ities for spinors. Spinors with fixed H-chirality e = ±1, CP2-chirality l, r and
M4-chirality L,R are defined by the condition

ΓΨ = eΨ ,

e = ±1 , (23)

where Γ denotes the matrix Γ9 = γ5×γ5, 1×γ5 and γ5×1 respectively. Clearly,
for a fixed H-chirality CP2- and M4-chiralities are correlated.

The spinors with H-chirality e = ±1 can be identified as quark and lep-
ton like spinors respectively. The separate conservation of baryon and lepton
numbers can be understood as a consequence of generalized chiral invariance if
this identification is accepted. For the spinors with a definite H-chirality one
can identify the vielbein group of CP2 as the electro-weak group: SO(4) =
SU(2)L × SU(2)R.

The covariant derivatives are defined by the spinorial connection

A = V +
B

2
(n+1+ + n−1−) . (24)

Here V and B denote the projections of the vielbein and Kähler gauge potentials
respectively and 1+(−) projects to the spinor H-chirality +(−). The integers
n± are odd from the requirement of a respectable spinor structure.
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The explicit representation of the vielbein connection V and of B are given
by the equations

V01 = − e1

r , V23 = e1

r ,

V02 = − e2

r , V31 = e2

r ,
V03 = (r − 1

r )e3 , V12 = (2r + 1
r )e3 ,

(25)

and

B = 2re3 , (26)

respectively. The explicit representation of the vielbein is not needed here.
Let us first show that the charged part of the spinor connection couples

purely left handedly. Identifying Σ0
3 and Σ1

2 as the diagonal (neutral) Lie-algebra
generators of SO(4), one finds that the charged part of the spinor connection is
given by

Ach = 2V23I
1
L + 2V13I

2
L , (27)

where one have defined

I1
L =

(Σ01 − Σ23)
2

,

I2
L =

(Σ02 − Σ13)
2

. (28)

Ach is clearly left handed so that one can perform the identification

W± =
2(e1 ± ie2)

r
, (29)

where W± denotes the charged intermediate vector boson.
Consider next the identification of the neutral gauge bosons γ and Z0 as

appropriate linear combinations of the two functionally independent quantities

X = re3 ,

Y =
e3

r
, (30)

appearing in the neutral part of the spinor connection. We show first that the
mere requirement that photon couples vectorially implies the basic coupling
structure of the GWS model leaving only the value of Weinberg angle undeter-
mined.
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To begin with let us define

γ̄ = aX + bY ,

Z̄0 = cX + dY , (31)

where the normalization condition

ad− bc = 1 ,

is satisfied. The physical fields γ and Z0 are related to γ̄ and Z̄0 by simple
normalization factors.

Expressing the neutral part of the spinor connection in term of these fields
one obtains

Anc = [(c + d)2Σ03 + (2d− c)2Σ12 + d(n+1+ + n−1−)]γ̄
+ [(a− b)2Σ03 + (a− 2b)2Σ12 − b(n+1+ + n−1−)]Z̄0 .

(32)

Identifying Σ12 and Σ03 = 1 × γ5Σ12 as vectorial and axial Lie-algebra gen-
erators, respectively, the requirement that γ couples vectorially leads to the
condition

c = −d . (33)

Using this result plus previous equations, one obtains for the neutral part of the
connection the expression

Anc = γQem + Z0(I3
L − sin2θW Qem) . (34)

Here the electromagnetic charge Qem and the weak isospin are defined by

Qem = Σ12 +
(n+1+ + n−1−)

6
,

I3
L =

(Σ12 − Σ03)
2

. (35)

The fields γ and Z0 are defined via the relations

γ = 6dγ̄ =
6

(a + b)
(aX + bY ) ,

Z0 = 4(a + b)Z̄0 = 4(X − Y ) . (36)

The value of the Weinberg angle is given by
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sin2θW =
3b

2(a + b)
, (37)

and is not fixed completely. Observe that right handed neutrinos decouple
completely from the electro-weak interactions.

The determination of the value of Weinberg angle is a dynamical problem.
The angle is completely fixed once the YM action is fixed by requiring that
action contains no cross term of type γZ0. Pure symmetry non-broken electro-
weak YM action leads to a definite value for the Weinberg angle. One can
however add a symmetry breaking term proportional to Kähler action and this
changes the value of the Weinberg angle.

To evaluate the value of the Weinberg angle one can express the neutral part
Fnc of the induced gauge field as

Fnc = 2R03Σ03 + 2R12Σ12 + J(n+1+ + n−1−) , (38)

where one has

R03 = 2(2e0 ∧ e3 + e1 ∧ e2) ,

R12 = 2(e0 ∧ e3 + 2e1 ∧ e2) ,

J = 2(e0 ∧ e3 + e1 ∧ e2) , (39)

in terms of the fields γ and Z0 (photon and Z- boson)

Fnc = γQem + Z0(I3
L − sin2θW Qem) . (40)

Evaluating the expressions above one obtains for γ and Z0 the expressions

γ = 3J − sin2θW R03 ,

Z0 = 2R03 . (41)

For the Kähler field one obtains

J =
1
3
(γ + sin2θW Z0) . (42)

Expressing the neutral part of the symmetry broken YM action

Lew = Lsym + fJαβJαβ ,

Lsym =
1

4g2
Tr(FαβFαβ) , (43)
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where the trace is taken in spinor representation, in terms of γ and Z0 one
obtains for the coefficient X of the γZ0 cross term (this coefficient must vanish)
the expression

X = − K

2g2
+

fp

18
,

K = Tr
[
Qem(I3

L − sin2θW Qem)
]

, (44)

In the general case the value of the coefficient K is given by

K =
∑

i

[
− (18 + 2n2

i )sin
2θW

9

]
, (45)

where the sum is over the spinor chiralities, which appear as elementary fermions
and ni is the integer describing the coupling of the spinor field to the Kähler
potential. The cross term vanishes provided the value of the Weinberg angle is
given by

sin2θW =
9

∑
i 1

(fg2 + 2
∑

i(18 + n2
i ))

. (46)

In the scenario where both leptons and quarks are elementary fermions the value
of the Weinberg angle is given by

sin2θW =
9

( fg2

2 + 28)
. (47)

The bare value of the Weinberg angle is 9/28 in this scenario, which is quite
close to the typical value 9/24 of GUTs [6].

2.2 Discrete symmetries

The treatment of discrete symmetries C, P, and T is based on the following
requirements:
a) Symmetries must be realized as purely geometric transformations.
b) Transformation properties of the field variables should be essentially the same
as in the conventional quantum field theories [1].

The action of the reflection P on spinors of is given by

Ψ → PΨ = γ0 × γ0Ψ . (48)

in the representation of the gamma matrices for which γ0 is diagonal. It should
be noticed that W and Z0 bosons break parity symmetry as they should since
their charge matrices do not commute with the matrix of P.
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The guess that a complex conjugation in CP2 is associated with T trans-
formation of the physicist turns out to be correct. One can verify by a direct
calculation that pure Dirac action is invariant under T realized according to

mk → T (Mk) ,

ξk → ξ̄k ,

Ψ → γ1γ3 × 1×Ψ . (49)

The operation bearing closest resemblance to the ordinary charge conjuga-
tion corresponds geometrically to complex conjugation in CP2:

ξk → ξ̄k ,

Ψ → γ2γ0 × 1×Ψ† . (50)

As one might have expected symmetries CP and T are exact symmetries of the
pure Dirac action.

3 Basic facts about induced gauge fields

Since the classical gauge fields are closely related in TGD framework, it is not
possible to have space-time sheets carrying only single kind of gauge field. For
instance, em fields are accompanied by Z0 fields for extremals of Kähler action.
Weak forces is however absent unless the space-time sheets contains topologi-
cally condensed exotic weakly charged particles responding to this force. Same
applies to classical color forces. The fact that these long range fields are present
forces to assume that there exists a hierarchy of scaled up variants of standard
model physics identifiable in terms of dark matter.

Classical em fields are always accompanied by Z0 field and some components
of color gauge field. For extremals having homologically non-trivial sphere as a
CP2 projection em and Z0 fields are the only non-vanishing electroweak gauge
fields. For homologically trivial sphere only W fields are non-vanishing. Color
rotations does not affect the situation.

For vacuum extremals all electro-weak gauge fields are in general non-vanishing
although the net gauge field has U(1) holonomy by 2-dimensionality of the CP2

projection. Color gauge field has U(1) holonomy for all space-time surfaces
and quantum classical correspondence suggest a weak form of color confine-
ment meaning that physical states correspond to color neutral members of color
multiplets.

3.1 Induced gauge fields for space-times for which CP2

projection is a geodesic sphere

If one requires that space-time surface is an extremal of Kähler action and has a
2-dimensional CP2 projection, only vacuum extremals and space-time surfaces
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for which CP2 projection is a geodesic sphere, are allowed. Homologically non-
trivial geodesic sphere correspond to vanishing W fields and homologically non-
trivial sphere to non-vanishing W fields but vanishing γ and Z0. This can be
verified by explicit examples.

r = ∞ surface gives rise to a homologically non-trivial geodesic sphere for
which e0 and e3 vanish imply the vanishing of W field. For space-time sheets
for which CP2 projection is r = ∞ homologically non-trivial geodesic sphere of
CP2 one has

γ = (
3
4
− sin2(θW )

2
)Z0 ' 5Z0

8
.

The induced W fields vanish in this case and they vanish also for all geodesic
sphere obtained by SU(3) rotation.

Im(ξ1) = Im(ξ2) = 0 corresponds to homologically trivial geodesic sphere.
A more general representative is obtained by using for the phase angles of stan-
dard complex CP2 coordinates constant values. In this case e1 and e3 vanish so
that the induced em, Z0, and Kähler fields vanish but induced W fields are non-
vanishing. This holds also for surfaces obtained by color rotation. Hence one
can say that for non-vacuum extremals with 2-D CP2 projection color rotations
and weak symmetries commute.

3.2 Space-time surfaces with vanishing em, Z0, or Kähler
fields

In the following the induced gauge fields are studied for general space-time sur-
face without assuming the extremal property. In fact, extremal property reduces
the study to the study of vacuum extremals and surfaces having geodesic sphere
as a CP2 projection and in this sense the following arguments are somewhat ob-
solete in their generality.

3.2.1 Space-times with vanishing em, Z0, or Kähler fields

The following considerations apply to a more general situation in which the
homologically trivial geodesic sphere and extremal property are not assumed.
It must be emphasized that this case is possible in TGD framework only for a
vanishing Kähler field.

Using spherical coordinates (r,Θ, Ψ,Φ) for CP2, the expression of Kähler
form reads as

J =
r

F 2
dr ∧ (dΨ + cos(Θ)dΦ) +

r2

2F
sin(Θ)dΘ ∧ dΦ ,

F = 1 + r2 . (51)

The general expression of electromagnetic field reads as
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Fem = (3 + 2p)
r

F 2
dr ∧ (dΨ + cos(Θ)dΦ) + (3 + p)

r2

2F
sin(Θ)dΘ ∧ dΦ ,

p = sin2(ΘW ) , (52)

where ΘW denotes Weinberg angle.
a) The vanishing of the electromagnetic fields is guaranteed, when the con-

ditions

Ψ = kΦ ,

(3 + 2p)
1

r2F
(d(r2)/dΘ)(k + cos(Θ)) + (3 + p)sin(Θ) = 0 , (53)

hold true. The conditions imply that CP2 projection of the electromagneti-
cally neutral space-time is 2-dimensional. Solving the differential equation one
obtains

r =

√
X

1−X
,

X = D

[
| (k + u

C
|
]ε

,

u ≡ cos(Θ) , C = k + cos(Θ0) , D =
r2
0

1 + r2
0

, ε =
3 + p

3 + 2p
, (54)

where C and D are integration constants. 0 ≤ X ≤ 1 is required by the reality
of r. r = 0 would correspond to X = 0 giving u = −k achieved only for |k| ≤ 1
and r = ∞ to X = 1 giving |u+k| = [(1+ r2

0)/r2
0)]

(3+2p)/(3+p) achieved only for

sign(u + k)× [
1 + r2

0

r2
0

]
3+2p
3+p ≤ k + 1 ,

where sign(x) denotes the sign of x.
The expressions for Kähler form and Z0 field are given by

J = − p

3 + 2p
Xdu ∧ dΦ ,

Z0 = −6
p
J . (55)

The components of the electromagnetic field generated by varying vacuum pa-
rameters are proportional to the components of the Kähler field: in particular,
the magnetic field is parallel to the Kähler magnetic field. The generation of a
long range Z0 vacuum field is a purely TGD based feature not encountered in
the standard gauge theories.
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b) The vanishing of Z0 fields is achieved by the replacement of the parameter
ε with ε = 1/2 as becomes clear by considering the condition stating that Z0

field vanishes identically. Also the relationship Fem = 3J = − 3
4

r2

F du ∧ dΦ is
useful.

c) The vanishing Kähler field corresponds to ε = 1, p = 0 in the formula for
em neutral space-times. In this case classical em and Z0 fields are proportional
to each other:

Z0 = 2e0 ∧ e3 =
r

F 2
(k + u)

∂r

∂u
du ∧ dΦ = (k + u)du ∧ dΦ ,

r =

√
X

1−X
, X = D|k + u| ,

γ = −p

2
Z0 . (56)

For a vanishing value of Weinberg angle (p = 0) em field vanishes and only
Z0 field remains as a long range gauge field. Vacuum extremals for which long
range Z0 field vanishes but em field is non-vanishing are not possible.

3.2.2 The effective form of CP2 metric for surfaces with 2-dimensional
CP2 projection

The effective form of the CP2 metric for a space-time having vanishing em,Z0,
or Kähler field is of practical value in the case of vacuum extremals and is given
by

ds2
eff = (srr(

dr

dΘ
)2 + sΘΘ)dΘ2 + (sΦΦ + 2ksΦΨ)dΦ2 =

R2

4
[seff

ΘΘdΘ2 + seff
ΦΦ dΦ2] ,

seff
ΘΘ = X ×

[
ε2(1− u2)
(k + u)2

× 1
1−X

+ 1−X

]
,

seff
ΦΦ = X × [

(1−X)(k + u)2 + 1− u2
]

, (57)

and is useful in the construction of vacuum imbedding of, say Schwartchild
metric.

3.2.3 Topological quantum numbers

Space-times for which either em, Z0, or Kähler field vanishes decompose into
regions characterized by six vacuum parameters: two of these quantum numbers
(ω1 and ω2) are frequency type parameters, two (k1 and k2 ) are wave vector
like quantum numbers, two of the quantum numbers (n1 and n2) are integers.
The parameters ωi and ni will be referred as electric and magnetic quantum
numbers. The existence of these quantum numbers is not a feature of these
solutions alone but represents a much more general phenomenon differentiating
in a clear cut manner between TGD and Maxwell’s electrodynamics.
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The simplest manner to avoid surface Kähler charges and discontinuities
or infinities in the derivatives of CP2 coordinates on the common boundary of
two neighboring regions with different vacuum quantum numbers is topological
field quantization, 3-space decomposes into disjoint topological field quanta,
3-surfaces having outer boundaries with possibly macroscopic size.

Under rather general conditions the coordinates Ψ and Φ can be written in
the form

Ψ = ω2m
0 + k2m

3 + n2φ + Fourier expansion ,

Φ = ω1m
0 + k1m

3 + n1φ + Fourier expansion . (58)

m0,m3 and φ denote the coordinate variables of the cylindrical M4 coordinates)
so that one has k = ω2/ω1 = n2/n1 = k2/k1. The regions of the space-time
surface with given values of the vacuum parameters ωi,ki and ni and m and
C are bounded by the surfaces at which space-time surface becomes ill-defined,
say by r > 0 or r < ∞ surfaces.

The space-time surface decomposes into regions characterized by different
values of the vacuum parameters r0 and Θ0. At r = ∞ surfaces n2,ω2 and m
can change since all values of Ψ correspond to the same point of CP2: at r = 0
surfaces also n1 and ω1 can change since all values of Φ correspond to same
point of CP2, too. If r = 0 or r = ∞ is not in the allowed range space-time
surface develops a boundary.

This implies what might be called topological quantization since in general
it is not possible to find a smooth global imbedding for, say a constant magnetic
field. Although global imbedding exists it decomposes into regions with different
values of the vacuum parameters and the coordinate u in general possesses
discontinuous derivative at r = 0 and r = ∞ surfaces. A possible manner to
avoid edges of space-time is to allow field quantization so that 3-space (and field)
decomposes into disjoint quanta, which can be regarded as structurally stable
units a 3-space (and of the gauge field). This doesn’t exclude partial join along
boundaries for neighboring field quanta provided some additional conditions
guaranteing the absence of edges are satisfied.

For instance, the vanishing of the electromagnetic fields implies that the
condition

Ω ≡ ω2

n2
− ω1

n1
= 0 , (59)

is satisfied. In particular, the ratio ω2/ω1 is rational number for the electro-
magnetically neutral regions of space-time surface. The change of the parameter
n1 and n2 (ω1 and ω2) in general generates magnetic field and therefore these
integers will be referred to as magnetic (electric) quantum numbers.
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4 p-Adic numbers and TGD

4.1 p-Adic number fields

p-Adic numbers (p is prime: 2,3,5,...) can be regarded as a completion of the
rational numbers using a norm, which is different from the ordinary norm of
real numbers [8]. p-Adic numbers are representable as power expansion of the
prime number p of form:

x =
∑

k≥k0

x(k)pk, x(k) = 0, ...., p− 1 . (60)

The norm of a p-adic number is given by

|x| = p−k0(x) . (61)

Here k0(x) is the lowest power in the expansion of the p-adic number. The norm
differs drastically from the norm of the ordinary real numbers since it depends
on the lowest pinary digit of the p-adic number only. Arbitrarily high powers in
the expansion are possible since the norm of the p-adic number is finite also for
numbers, which are infinite with respect to the ordinary norm. A convenient
representation for p-adic numbers is in the form

x = pk0ε(x) , (62)

where ε(x) = k + .... with 0 < k < p, is p-adic number with unit norm and
analogous to the phase factor exp(iφ) of a complex number.

The distance function d(x, y) = |x−y|p defined by the p-adic norm possesses
a very general property called ultra-metricity:

d(x, z) ≤ max{d(x, y), d(y, z)} . (63)

The properties of the distance function make it possible to decompose Rp into
a union of disjoint sets using the criterion that x and y belong to same class if
the distance between x and y satisfies the condition

d(x, y) ≤ D . (64)

This division of the metric space into classes has following properties:
a) Distances between the members of two different classes X and Y do not

depend on the choice of points x and y inside classes. One can therefore speak
about distance function between classes.
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b) Distances of points x and y inside single class are smaller than distances
between different classes.

c) Classes form a hierarchical tree.
Notice that the concept of the ultra-metricity emerged in physics from the

models for spin glasses and is believed to have also applications in biology [10].
The emergence of p-adic topology as the topology of the effective space-time
would make ultra-metricity property basic feature of physics.

4.2 Canonical correspondence between p-adic and real num-
bers

The basic challenge encountered by p-adic physicist is how to map the pre-
dictions of the p-adic physics to real numbers. p-Adic probabilities provide a
basic example in this respect. Identification via common rationals and canonical
identification and its variants have turned out to play a key role in this respect.

4.2.1 Basic form of canonical identification

There exists a natural continuous map I : Rp → R+ from p-adic numbers to
non-negative real numbers given by the ”pinary” expansion of the real number
for x ∈ R and y ∈ Rp this correspondence reads

y =
∑

k>N

ykpk → x =
∑

k<N

ykp−k ,

yk ∈ {0, 1, .., p− 1} . (65)

This map is continuous as one easily finds out. There is however a little difficulty
associated with the definition of the inverse map since the pinary expansion like
also decimal expansion is not unique (1 = 0.999...) for the real numbers x, which
allow pinary expansion with finite number of pinary digits

x =
N∑

k=N0

xkp−k ,

x =
N−1∑

k=N0

xkp−k + (xN − 1)p−N + (p− 1)p−N−1
∑

k=0,..

p−k .

(66)

The p-adic images associated with these expansions are different

y1 =
N∑

k=N0

xkpk ,
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y2 =
N−1∑

k=N0

xkpk + (xN − 1)pN + (p− 1)pN+1
∑

k=0,..

pk

= y1 + (xN − 1)pN − pN+1 , (67)

so that the inverse map is either two-valued for p-adic numbers having expansion
with finite pinary digits or single valued and discontinuous and non-surjective if
one makes pinary expansion unique by choosing the one with finite pinary digits.
The finite pinary digit expansion is a natural choice since in the numerical work
one always must use a pinary cutoff on the real axis.

4.2.2 The topology induced by canonical identification

The topology induced by the canonical identification in the set of positive real
numbers differs from the ordinary topology. The difference is easily understood
by interpreting the p-adic norm as a norm in the set of the real numbers. The
norm is constant in each interval [pk, pk+1) (see Fig. 4.2.2) and is equal to the
usual real norm at the points x = pk: the usual linear norm is replaced with a
piecewise constant norm. This means that p-adic topology is coarser than the
usual real topology and the higher the value of p is, the coarser the resulting
topology is above a given length scale. This hierarchical ordering of the p-adic
topologies will be a central feature as far as the proposed applications of the
p-adic numbers are considered.

Ordinary continuity implies p-adic continuity since the norm induced from
the p-adic topology is rougher than the ordinary norm. p-Adic continuity implies
ordinary continuity from right as is clear already from the properties of the p-
adic norm (the graph of the norm is indeed continuous from right). This feature
is one clear signature of the p-adic topology.
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Figure 1: The real norm induced by canonical identification from 2-adic norm.
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The linear structure of the p-adic numbers induces a corresponding structure
in the set of the non-negative real numbers and p-adic linearity in general differs
from the ordinary concept of linearity. For example, p-adic sum is equal to real
sum only provided the summands have no common pinary digits. Furthermore,
the condition x+p y < max{x, y} holds in general for the p-adic sum of the real
numbers. p-Adic multiplication is equivalent with the ordinary multiplication
only provided that either of the members of the product is power of p. Moreover
one has x×p y < x× y in general. The p-Adic negative −1p associated with p-
adic unit 1 is given by (−1)p =

∑
k(p−1)pk and defines p-adic negative for each

real number x. An interesting possibility is that p-adic linearity might replace
the ordinary linearity in some strongly nonlinear systems so these systems would
look simple in the p-adic topology.

These results suggest that canonical identification is involved with some
deeper mathematical structure. The following inequalities hold true:

(x + y)R ≤ xR + yR ,

|x|p|y|R ≤ (xy)R ≤ xRyR , (68)

where |x|p denotes p-adic norm. These inequalities can be generalized to the
case of (Rp)n (a linear vector space over the p-adic numbers).

(x + y)R ≤ xR + yR ,

|λ|p|y|R ≤ (λy)R ≤ λRyR , (69)

where the norm of the vector x ∈ Tn
p is defined in some manner. The case of

Euclidian space suggests the definition

(xR)2 = (
∑

n

x2
n)R . (70)

These inequalities resemble those satisfied by the vector norm. The only dif-
ference is the failure of linearity in the sense that the norm of a scaled vector
is not obtained by scaling the norm of the original vector. Ordinary situation
prevails only if the scaling corresponds to a power of p.

These observations suggests that the concept of a normed space or Banach
space might have a generalization and physically the generalization might ap-
ply to the description of some non-linear systems. The nonlinearity would be
concentrated in the nonlinear behavior of the norm under scaling.

4.2.3 Modified form of the canonical identification

The original form of the canonical identification is continuous but does not
respect symmetries even approximately. This led to a search of variants which
would do better in this respect. The modification of the canonical identification
applying to rationals only and given by
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IQ(q = pk × r

s
) = pk × I(r)

I(s)
(71)

is uniquely defined for rationals, maps rationals to rationals, has also a symmetry
under exchange of target and domain. This map reduces to a direct identification
of rationals for 0 ≤ r < p and 0 ≤ s < p. It has turned out that it is this
map which most naturally appears in the applications. The map is obviously
continuous locally since p-adically small modifications of r and s mean small
modifications of the real counterparts.

Canonical identification is in a key role in the successful predictions of the
elementary particle masses. The predictions for the light elementary particle
masses are within extreme accuracy same for I and IQ but IQ is theoretically
preferred since the real probabilities obtained from p-adic ones by IQ sum up
to one in p-adic thermodynamics.

4.2.4 Generalization of number concept and notion of imbedding
space

TGD forces an extension of number concept: roughly a fusion of reals and
various p-adic number fields along common rationals is in question. This induces
a similar fusion of real and p-adic imbedding spaces. Since finite p-adic numbers
correspond always to non-negative reals n-dimensional space Rn must be covered
by 2n copies of the p-adic variant Rn

p of Rn each of which projects to a copy of
Rn

+ (four quadrants in the case of plane). The common points of p-adic and real
imbedding spaces are rational points and most p-adic points are at real infinity.

For a given p-adic space-time sheet most points are literally infinite as real
points and the projection to the real imbedding space consists of a discrete set
of rational points: the interpretation in terms of the unavoidable discreteness of
the physical representations of cognition is natural. Purely local p-adic physics
implies real p-adic fractality and thus long range correlations for the real space-
time surfaces having enough common points with this projection.

p-Adic fractality means that M4 projections for the rational points of space-
time surface X4 are related by a direct identification whereas CP2 coordinates
of X4 at these points are related by I, IQ or some of its variants implying long
range correlates for CP2 coordinates. Since only a discrete set of points are
related in this manner, both real and p-adic field equations can be satisfied and
there are no problems with symmetries. p-Adic effective topology is expected
to be a good approximation only within some length scale range which means
infrared and UV cutoffs. Also multi-p-fractality is possible.
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